martes, 13 de octubre de 2009

Magnitud física



En física, química, ingeniería y otras ciencias aplicadas se denomina magnitud adimensional a toda aquella magnitud que carece de una magnitud física asociada.[cita requerida] Así, serían magnitudes adimensionales todas aquellas que no tienen unidades, o cuyas unidades pueden expresarse como relaciones matemáticas puras. Algunos ejemplos de magnitudes adimensionales son:

  • La cantidad de objetos de un conjunto
  • Las razones de proporcionalidad
  • Los ángulos: a pesar que pueden expresarse en grados, radianes, etc., sus unidades se pueden definir de forma puramente matemática, sin necesidad de definir una unidad física, simplemente expresándolos como fracción de una circunferencia.
  • Algunos números usados en ingeniería como el número de Mach, el número de Reynolds, etc.

Magnitud física


Toda medición consiste en atribuir un valor numérico cuantitativo a alguna propiedad de un cuerpo, como la longitud o el área. Estas propiedades, conocidas bajo el nombre de magnitudes físicas, pueden cuantificarse por comparación con un patrón o con partes de un patrón. Constituyen ejemplos de magnitudes físicas: la masa, la longitud, el tiempo, la densidad, la temperatura, la velocidad, la aceleración, la energía, etc.

A diferencia de las unidades empleadas para expresar su valor, las magnitudes físicas se expresan en cursiva: así, por ejemplo, la "masa" se indica con "m", y "una masa de 3 kilogramos" la expresaremos como m = 3 kg.


Tipos de magnitudes físicas [

Las magnitudes físicas se pueden clasificar de acuerdo a varios criterios:

  • Según su forma matemática, las magnitudes se clasifican en escalares, vectoriales o tensoriales.
  • Según su actividad, se clasifican en magnitudes extensivas e intensivas.

Escalares, vectores y tensores

Las magnitudes físicas se clasifican en tres tipos:

  • Magnitudes escalares: Son aquéllas que quedan completamente definidas por un número y las unidades utilizadas para su medida. Esto es, las magnitudes escalares están representadas por el ente matemático más simple, por un número. Podemos decir que poseen un módulo, pero que carecen de direción y sentido. Su valor puede ser independiente del observador (v.g.: la masa, la temperatura, la densidad, etc.) o depender de la posición o estado de movimiento del observador (v.g.: la energía cinética)
  • Magnitudes vectoriales: Son las magnitudes que quedan caracterizadas por una cantidad (intensidad o módulo), una dirección y un sentido. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa mediante un segmento orientado. Ejemplos de estas magnitudes son: la velocidad,la aceleración, la fuerza, el campo eléctrico, etc.
Además, al considerar otro sistema de coordenadas asociado a un observador con diferente estado de movimiento o de orientación, las magnitudes vectoriales no presentan invariancia de cada uno de los componentes del vector y, por tanto, para relacionar las medidas de diferentes observadores se necesitan relaciones de transformación vectorial. En mecánica clásica también el campo electrostático se considera un vector; sin embargo, de acuerdo con la teoría de la relatividad esta magnitud, al igual que el campo magnético, debe ser tratada como parte de una magnitud tensorial.
  • Magnitudes tensoriales (propiamente dichas): Son las que caracterizan propiedades o comportamientos físicos modelizables mediante un conjunto de números que cambian tensorialmente al elegir otro sistema de coordenadas asociado a un observador con diferente estado de movimiento o de orientación.

De acuerdo con el tipo de magnitud, debemos escoger leyes de transformación de las componentes físicas de las magnitudes medidas, para poder ver si diferentes observadores hicieron la misma medida o para saber qué medidas obtendrá un observador conocidas las de otro cuya orientación y estado de movimiento respecto al primero sean conocidos.



magnitudes extensivas e intensivas

Una magnitud extensiva es una magnitud que depende de la cantidad de sustancia que tiene el cuerpo o sistema. Las magnitudes extensivas son aditivas. Si consideramos un sistema físico formado por dos partes o subsistemas, el valor total de una magnitud extensiva resulta ser la suma de sus valores en cada una de las dos partes. Ejemplos: la masa y el volumen de un cuerpo o sistema, la energía de un sistema termodinámico, etc.

Una magnitud intensiva es aquélla cuyo valor no depende de la cantidad de materia del sistema. Las magnitudes intensivas tiene el mismo valor para un sistema que para cada una de sus partes consideradas como subsistemas. Ejemplos: la densidad, la temperatura y la presión de un sistema termodinámico en equilibrio.

En general, el cociente entre dos magnitudes extensivas da como resultado una magnitud intensiva. Ejemplo: masa dividida por volumen representa densidad.



Mariana Funes y Agustina Nibbes 1°6

No hay comentarios:

Publicar un comentario